FAMSI Final Report:
Cliff Paintings of Parangaricutiro,
Michoacán, México

Tricia Gabany-Guerrero, Ph.D.

1.1 Cliff Paintings: Panel A
Photo: © Gabany-Guerrero

For more information contact mexcri@earthlink.net
Gabany-Guerrero

ABSTRACT

Central–West Mexico, perhaps best known for the Late Postclassic Tarascans, has long been an anomaly in Mesoamerica. This region has frequently been omitted from classification within Mesoamerican patterns of material culture (Chadwick, 1971). Still a region of intense volcanic activity and sparsely documented biodiversity, the temperate rainforests in the highlands of Michoacán have harbored few archaeological studies in the more than 75,000 km² once under the territorial control of the Late Postclassic Tarascans. Studies of this region have concentrated on the border with the Aztecs to the east (Pollard, 1993), the Teuchitlan complex to the northwest (Weigand, 1996), the ancient center of Zacapu (Carot, 1996) and the core Lake Pátzcuaro basin (Pollard, 1993). With the majority of studies focused on Maya (Miller, 1997; Stone, 1995) and Aztec civilizations (Smith, 2001), there is an unmistakable gap in information regarding the Tarascan civilization and its predecessors in scholarly work on Mesoamerica. This study provides documentation for iconographic and material remains for a site in the highland region of Michoacán and has the potential to provide evidence for long–term shared cultural and material systems with Mesoamerica.

Although several early colonial codices exist from the Tarascan region, pre–Columbian codices and Mesoamerican iconography in paintings are unknown. This research project focused on a highland cliff painting site in the foothills of the Tancítaro volcanic range, near the volcano Parícutin (eruption, 1943). An interdisciplinary team of researchers studied a series of layered cliff paintings and accompanying artifacts located in a caldera in this highland volcanic region. Located at approximately 2500 m asl., the paintings found on eight of the inner cliffs of the caldera present examples of Mesoamerican iconography. Mesoamerican motifs (including personages and deities) predominate on the principal panel. In addition, archaic motifs (hunters/dancers and animals) are distributed throughout the cliff walls.

Lithics, a small number of ceramics, and human and animal remains, were excavated from test pits beneath the cliff paintings. The discovery of a burial in a test pit below one of the cliff paintings suggests that this site was of ritual importance. The stratigraphy of the site indicates two principal periods of ritual use: 1) a deer antler tool, on a cliff shelf buried beside paintings demonstrating Classic Period iconography, was dated to the Classic Period (calibrated BP 1610 to 1530); and 2) three bone collagen samples from long bones of human remains returned Late Archaic Period dates (calibrated BP 4520–4290, 4510–4480, and 4440–4260). Dating of human remains from this site would place it as the oldest known burial from Central–West Mexico, predating El Opeño burials by approximately one thousand years (Noguera, 1931; Oliveros, 1975).

Arnauld, Metcalfe, Petrequin (1992) have discussed climatic changes resulting in drier climates for the Late Holocene in lowlands of Zacapu, Michoacán. Their results coincide with studies documenting similar conditions during the same period in the Central Basin of Mexico (Buckler, Pearsall, Holtsford, 1997). The results to–date from the Alberca research project suggest a hypothesis that high–altitude environments in Michoacán, such as calderas rich in aquatic resources, could have served as critical habitats for humans and wildlife during the Late Archaic, when dry environmental conditions persisted in the Western Hemisphere. Thus, the sparse data for the Late Archaic in Central–West Mexico may be due to the lack of research in appropriate ecological zones.
INDEX

I. Graphics
 1.1 Photo: Rock Paintings - Panel A 1
 1.2 Map of La Alberca (3D) 5
 1.3 Photo: La Alberca 5
 1.4 Paricutin Ash Predicted on Site in 1946 6
 1.5 Photo: Dr. Bohrson in basin test pit 6
 1.6 Detail of Test Pit 27 7
 1.7 General Map of La Alberca 8
 1.8 Excavation Plan 2002 9
 1.9 Photo: Test Pits by the Cliffs 9
 2.0 Test Pit Plan at the Cliffs 10
 2.1 Photo: View of the Cliffs 10
 2.2 Artistic Representation of Cliffs around 4500 years B.P 11
 2.3 Photo: View of the Caldera Alberca from the Cliffs 12
 2.4 Sample of the Red Paintings 12
 2.5 Sample of the Lime-Based Paintings 12
 2.6 Detail of the Lime-Based Paintings 12
 2.7 Photo: Francisco Barajas Pascual 13
 2.8 Photo: Round Basalt Lithic 13
 2.9 Sample of Results from Quadrant 27 14
 3.0 Photo: Burial Location 14
 3.1 Illustration of Burial 15
 3.2 Photo: Lower Mandible 15
 3.3 Radiocarbon Dating (AMS) Results for Bone Collagen from Burial Long Bones 15
 3.4 MURR Laboratory results for provenience of obsidian from La Alberca cliff test pits 16
 3.5 Comunidad Authorities Visit Site 16
 3.6 Comunidad Elders Examine Sample Artifacts 16
 3.7 Archival Storage Construction by C.I.N.S.J.P. 17
 3.8 Maria Martinez and Guillermo Ortiz Hermenegildo (Members of the C.I.N.S.P.) Prepare Artifact Catalog 17
FAMSI Final Report:
La Alberca, Nuevo Parangaricutiro, Michoacán, México

Project Director
Tricia Gabany-Guerrero, Ph.D.

This report fulfills the obligations of the grant from The Foundation for the Advancement of Mesoamerican Studies regarding the field study completed during 2002, authorized under Oficio Número 401-36/0946 del Consejo Nacional de Arqueología en México. We wish to recognize the support of FAMSI, The Comunidad Indígena de Nuevo San Juan Parangaricutiro and The National Geographic Committee for Research & Exploration. I am solely responsible for any errors and omissions in this document.

Profesional Team
Dr. Wendy Bohrson, Volcanologist, Central Washington University
Dr. Lisa Ely, Geomorphologist, Central Washington University
Narcizo Guerrero Murillo, M.S., Community Liaison and Member of The Comunidad Indígena de Nuevo San Juan Parangaricutiro
Dr. Steven Harder, GPS and Mapping, The University of Texas at El Paso
Dr. Cristina Hernández, Archaeologist-Test Pit Design Strategy & Training, Tulane University
Dr. Francisco Martinez González, Hydraulic and Environmental Engineering, the University of Guanajuato
Dr. Anthony Newton, Geophysicist-Tephrochronology, The University of Edinburg, Scotland
Special Consultant, Dr. Helen Pollard, Archaeologist, Michigan State University

Mexican Graduate Assistants
Ma. Eugenia Hernández Cotera - Graduate Student, ENAH.
Minea Armijo Lasso - Researcher, Art Department, La Universidad Autónoma de Ciudad Juárez
Research Summary

Description of La Alberca
This research project focused on a highland cliff painting site in the foothills of the Tancitaro volcanic range, near the volcano Paricutín (eruption, 1943). An interdisciplinary team of researchers studied a series of layered cliff paintings and accompanying artifacts located in a caldera in this highland volcanic region. Located at approximately 2500 m asl., the paintings found on eight of the inner cliffs of the caldera present examples of Mesoamerican iconography. Mesoamerican motifs (including personages and deities) predominate on the principal panel. In addition, archaic motifs (hunters/dancers and animals) are distributed throughout the cliff walls.

1.2 Map of La Alberca (3D)
Graphic: Guerrero-Murillo, © MEXECRI, Inc.

According to the geologists’ reports, Dr. Wendy Bohrson and Dr. Lisa Ely (Central Washington University), the caldera, La Alberca, was formed approximately 10,000 years ago (BP) during the Holocene. In the Meseta Purépecha (or Tarascan Highlands), volcanoes are very common, but until this study calderas have been poorly documented. The caldera Alberca is a basin where water accumulated during the annual rainy season to create a temporal pond that every five years could have been semi-permanent. The caldera is bordered by high basalt cliffs where lava can clearly be seen.

1.3 La Alberca
Photo: © Hernández Cotera

The eruption of the Paricutín volcano had a more severe impact on this site than the researchers expected. A report published by Foshag (reproduced by Luhr and Simkin, 1993) described the accumulation of volcanic ash deposited by Paricutín between 1941-1945 and estimated that less than one meter accumulated in La Alberca. This excavation was planned based on Foshag’s report, regarding the ash depth at the site, in order to project the timeframe. Once test pits were excavated in the caldera basin and beneath the cliff paintings, we discovered a very different depositional and sedimentation history.
The lowest part of the basin located directly in front of the cliffs containing the paintings is extremely flat, with less than .25 meters of variation in elevation. The two test pits (3m x 3m x 3m) in the basin revealed an extremely fast rate of sedimentation caused by the flow of Paricutin ash into the basin.

This permitted the researchers to observe, with great detail, the record of depositional layers formed in the past 60 years because they were not destroyed by plant roots or animal tunnels. According to Dr. Ely, this record provided a good sample of how frequently and how deeply the basin filled with water, because the thin layers were buried and preserved before they were destroyed by later water flows. One objective of the test pits was to document the paleoenvironmental record of the caldera, but after 3 meters of excavation we were unable to reach below the Paricutin ash layer in the timeframe allotted. At this point, we stopped the basin excavation and took ash samples from each layer to confirm that the ash pertained to the Paricutin volcano. Given the conditions of the caldera, Drs. Ely and Bohrson formed the hypothesis that La Alberca represented a stable and semi-permanent source of water from the Holocene to the present that could have provided an ideal habitat for wildlife including migratory birds. The study by Arnauld, Metcalfe and
Petriquin (1992) illustrates that severe drought plagued human settlements in the lowland Bajio of Michoacán (extending to the Colorado River in the U.S.) during the Holocene. This project proposes the hypothesis that humans may have searched for more humid climatic conditions in high-altitude calderas of Michoacán in order to survive.

Dr. Christine Hernández (Tulane University) trained the Comunidad workers in excavation techniques, selected excavation methods most appropriate for the site (based on Flannery, 1986), examined ceramics from other sites in the local region and participated in the first phase of the excavation in test pits 19-22.

Dr. Helen Pollard (Michigan State University) provided expert consultation regarding test pit strategies under the cliff paintings and potential settlement sites within the study area. Based on her recommendations, surface surveys and test pits are planned at several of these locations in order to determine if they are residential zones affiliated with the ceremonial/ritual cliff painting site.

The stratigraphy of the test pits beneath the paintings revealed a more complex history than expected. Test pit 27, located directly beneath the principal panel of paintings, revealed two volcanic ash (tephra) layers. The first layer extended to a depth of 1.5 meters. Beneath this ash barrier several layers of soil demonstrated elements of human occupation (indicated by obsidian flakes and faunal remains). Beneath these layers we found a large-grained volcanic ash layer of approximately 1.5 meters. Samples from both ash layers were sent to Dr. Anthony Newton, geophysicist at the University of Edinburg, Scotland. He analyzed the samples and determined that the first layer of volcanic ash pertained to Paricutin and the second layer of ash pertained to another eruption which is currently undocumented. There is no known historical record (Spanish or Tarascan) regarding volcanic eruptions in this region of Michoacán; our hypothesis is that the second layer of ash represents an unknown prehistoric volcanic eruption in the Alberca region. Dr. Newton plans to finish the tephra studies of the region during the 2003 field season.
1.7 General Map of La Alberca

Sitio La Alberca

Localización en El Municipio de Nuevo Parangaricutiro Michoacán, México

Caldera La Alberca

Pario

Diseño: Dra. Gabany-Guerrero
Human Occupation of the Cliffs

The cliffs on the north side of the caldera formed a cliff overhang, which could have protected humans from the climate. For example, in the high-altitude temperate rainforest this formation provided an area that remained practically dry due to the position of a rock overhang.

In contrast to the rest of the caldera, the cliffs with paintings are extremely smooth. The natural properties and protection of the cliffs facilitated their use for paintings and probably ritual practices. At this point, it seems improbable that prolonged prehistoric human settlements will be found in the caldera due to frequent flooding documented in the basin test pits. In addition, the research team conducted a detailed mapping survey in the caldera basin in order to search for probable settlement areas. More likely, perhaps, are settlements on the outskirts of the caldera where there was less risk of flooding. The timeframe for this field season prohibited a more general field survey outside the caldera de determine possible sites associated with La Alberca.
2.0 Test Pit Plan at Cliff Paintings

Graphic: Gabany-Guerrero, © MEXECRI, Inc.

2.1 View of the Cliffs

Photo: © Ely
Iconography

Based on the findings from this first field season, the cliff paintings could not yet be directly associated with the artifacts found in the test pits beneath the paintings. Further DNA and chemical studies of potential paint remains on artifacts have yet to be conducted.

As part of the survey, a detailed map was created of the cliff paintings. This map can be combined with detailed photographs using standard lenses, color filters, infrared filters and infrared film. A digital camera was also used to document the paintings. The results of these photos are still being analyzed and cataloged in order to create a master plan line drawing of all the paintings on the cliffs. In order to confirm these results it will be necessary to return to the site in 2003 as the 2002 study was interrupted by severe rains in the caldera.

The iconographic analysis will include a reproduction of the painting orientations and distribution along the cliff walls. In addition, the pigments will be studied once permission is received for this analysis from the Consejo Nacional de Arqueologia. Up to this point, the research has revealed two types of paintings that differ both in style, color and perhaps, materials. The “white” paintings appear to be produced from a mixture of lime with other pigments; the “red” paintings appear to be of red ochre or cinnabar. The “red” paintings illustrate a more archaic style, while the lime-based paintings display Mesoamerican motifs. Before further conclusions can be drawn, it is necessary to complete the biochemical and iconographic studies planned for 2003.
2.3 Vista a la caldera desde Los Riscos
Photo: © Hernández Sánchez

2.4 Sample of red paintings (Photoshop analysis)
Graphic: Armijo Lasso, © MEXECRI, Inc.

2.5 Samples of lime-based paintings (Photoshop analysis)
Photo: © Gabany-Guerrero

2.6 Line drawing of lime-based paintings
Illustration: © Gabany-Guerrero
Test Pits at Cliff Paintings

The test pits located at the cliff paintings revealed information critical for beginning to understand the site. The Paricutin eruption was clearly revealed as a demarcated and dense layer of ash during the excavation. Above this 1943 ash fauna remains indicated that this site was more recently occupied by eagles, falcons and rodents. Surprisingly, we also found an obsidian arrowhead, close to the surface, in the first layer of Paricutin volcanic ash; this discovery led to the conclusion (by Dr. Christina Hernandez) that the obsidian artifact had most likely fallen from the cliff above.

2.7 Francisco Barajas Pascual (member of La Comunidad Indígena de N.S.J.P.) displays an obsidian arrowhead.

The artifacts (virtually all lithics), human and faunal remains were registered and cataloged. The final report was provided to the Consejo Nacional de Arqueología in addition to a request for permission to continue studying the artifacts with other chemical studies.

In the test pits beside the largest panels of cliff paintings, below the level of Paricutin, fire pits and charcoal were found. Several natural rock shelves on the cliff face would have provided support for artists to paint the cliff walls. In the corner of Panel A cliff painting we excavated a round lithic with a thumb orifice that could have served as a tool in creating the paintings. Di Peso, Renaldo y Fenner (1974) described a similar lithic and described it as a smoothing or polishing rock. This rock was found beside a deer bone on the cliff shelf. The results of a C14 study dated the deer bone to between AD 480-520 (calibrated).
Burial

In the test pits in front of Panel A two large boulders were discovered (more than five tons each), which prohibited further excavation. Upon attempting to remove the upper boulder in order to close the excavation securely, a fractured human cranium was uncovered directly in front of Panel A; the burial was located directly above the second large boulder. Once the cranium was exposed it was decided to excavate the skeleton to prevent further damage and to avoid natural disintegration caused by the impending torrential rains during the rainy season. The discovery of the burial and its orientation (head-west; feet-east) in front of the paintings provoked the hypothesis that this was perhaps a more important ritual or ceremonial site than previously considered. A small obsidian chip was found the soil where the spinal column would have been located. No ritual objects were found with the burial. Presentation of results are pending osteological studies. The skeleton was supported by rocks behind the neck, spine and feet so that the body would not roll back on the boulder below (the skeleton was placed directly on the boulder below at an angle). Also, the rocks were part of small fire pits probably used as ritual fires. Carbon samples were collected from within the jaw and from the thin layer of soil between the skeleton and the boulder. Because the bones were extremely delicate, only the long bones, bone fragments and the complete set of teeth from the lower mandible were recovered.
Soil samples from the burial and burial area were collected for flora and fauna analysis. These studies are still pending. Nevertheless, the results of C14 dating (AMS) have revealed that the long bones are approximately 4500 years old (see chart).

The obsidian samples from test pits were analyzed by MURR lab to determine their provenience. The results indicated that the obsidian artifacts from the burial test pit correspond to Pénjamo, (Guanajuato), Cerro Varal (Michoacán), Zinaparo (Michoacán) and Ucareo (Michoacán). The diversity of provenience and antiquity of the site may lead to further studies regarding the obsidian exchange in this area during the late Holocene.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Measured Radiocarbon Age</th>
<th>Conventional Radiocarbon Age</th>
<th>2 Sigma Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>177072</td>
<td>3780 +/- 40 BP</td>
<td>3960 +/- 40 BP</td>
<td>Cal BC 2570 to 2340 (Cal BP 4520 to 4290)</td>
</tr>
<tr>
<td>177073</td>
<td>3760 +/- 40 BP</td>
<td>3940 +/- 40 BP</td>
<td>Cal BC 2560 to 2530 (Cal 4510 to 4480) and Cal BC 2500 to 2310 (Cal BP 4440 to 4260)</td>
</tr>
</tbody>
</table>

3.3 Radiocarbon Dating (AMS) Results for Bone Collagen from Burial Long Bones
Source: Testing by Beta Analytic, Inc.
The principal researcher and Narcizo Guerrero Murillo made a final presentation to approximately 90 Comunidad elders who requested the information (See Figures 23 & 24). The result of this meeting was to approve the temporary storage of artifacts in a temporary museum curated by the Departamento de Ecoturismo and to invite the principal researcher and research team to continue the study in collaboration with the Comunidad.
These are the current results from the research conducted during 2002. This report was prepared by Dr. Tricia Gabany-Guerrero (responsible for errors and omissions). The laboratory studies were funded by National Geographic, Committee for Research & Exploration under sponsorship by The Mexican Environmental and Cultural Research Institute (MEXECRI), a non-profit research and education organization. The team would like to especially thank The Comunidad Indígena de Nuevo Parangaricutiro, Dr. J. Benedict Warren and Patricia Warren, the Narciso Guerrero Martínez family in San Juan Nuevo Parangaricutiro, and Dr. Leticia Fernández, Guillermo Rodriguez, Victoria Vásquez at the University of Texas at El Paso. Dr. Russell Chianelli (University of Texas at El Paso) facilitated administrative support for processing FAMSI accounting records through the assistance of Diana Gutierrez.
Bibliografía

Arnauld, Charlotte, Sarah E. Metcalfe and Pierre Petrequin

Avila, Ricardo, Jean P. Emphoux, Luis G. Gastelum, Susana Ramirez, Otto Schondube, Francisco Valdez (editores)

Blanton, Richard, Gary M. Feinman, Stephen A. Kowalewski and Peter N. Peregrine, (Editors)

Buckler IV, Edward S., Deborah M. Pearsall and Timothy P. Holtsford

Carot, Patricia

Caso, Alfonso
1966 Los Calendarios Prehispanicos. Mexico City, Mexico:Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones Historicas.

Ciliberto, Enrico and Giuseppe Spoto, Editors

Cooper, Eben Shackleton

Di Peso, Charles C., John B. Rinaldo and Gloria J. Fenner

Feinman, Gary M. and Price, T. Douglas, Editors

Flannery, Kent V., Editor

Foster, Michael S.
1998 Greater Mesoamerica: The Archaeology of West and Northwest Mexico. Salt Lake City, UT: The Univ. of Utah Press.

Gabany-Guerrero, Tricia
Guerrero Murillo, Narcizo

Harbottle, Garmin

Henderson, Julian

Johnson, Frederick
1972 *The Prehistory of the Tehuacan Valley, Vol Four: Chronology and Irrigation.* Austin, TX: Univ. of Texas Press.

Justeson, John S.

Kelly, Isabel

Luhr, James F. and Simkin, Tom (editors)
1993 *Paricutin: The Volcano Born in a Mexican Cornfield.* Geoscience Press, Inc.: Phoenix, AZ.

MacNeish, Richard S., Nelken-Terner, Antoinette and Johnson, Irmgard W.
1967 *The Prehistory of the Tehuacan Valley, Vol Two: Nonceramic Artifacts.* Austin, TX: Univ. of TX.

Marcus, Joyce

Mays, Simon

Medina, Eugenia Fernandez-V. and Efraín Cardenas Garcia
2001 “Jihuatzio, La Casa Del Coyote: Un Estudio de las Relaciones de Poder en la Cuenca de Patzcuaro” Ponencia, no publicado.

Meighan, Clement W. and Leonard J. Foote
1967 *Excavations at Tizapan El Alto.*

Noguera, Eduardo

Odegaard, Nancy, Carroll, Scott and Zimmt, Werner S.

Oliveros, José Arturo

Pollard, Helen Perlstein

Smithers, Salvador, Constanza Vedga Sosa and Rodrigo Martinez Baracs, (editors) 1997 *Codices y Documentos sobre Mexico, Segundo Simposio, Volumen I*. Mexico City, Mexico: Insittuto Nacional de Antropologia e Historia.

